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Analysis of the tails of the small-angle neutron scattering (SANS) intensities

relevant to samples formed by porous silica and carbon dioxide at pressures

ranging from 0 to 20 MPa and at temperatures of 308 and 353 K confirms that

the CO2 fluid must be treated as a two-phase system. The first of these phases is

formed by the fluid closer to the silica wall than a suitable distance � and the

second by the fluid external to this shell. The sample scattering-length densities

and shell thicknesses are determined by the Porod invariants and the oscillations

observed in the Porod plots of the SANS intensities. The resulting matter

densities of the shell regions (thickness 15–35 Å) are approximately equal, while

those of the outer regions increase with pressure and become equal to the bulk

CO2 at the higher pressures only in the low-temperature case.

1. Introduction

Air rarefaction with increasing mount heights is well known to

climbers. This likely is the simplest example of the general

property that the density of a fluid is no longer homogeneous

when the fluid molecules interact with an external field. For

the same reason, the density profile of a fluid inside a vessel is

not constant in proximity to the vessel walls. In fact, the walls

of the container act as an external potential that ensures that

no fluid molecule occupies a position external to the vessel.

We defer to Percus (1982) for a statistical mechanical

presentation of non-uniform fluids. Furthermore, the first

numerical determinations of the density profile of a simple

fluid near a hard wall trace back to the 1970s (see, e.g.,

Abraham & Singh, 1977).

Wetting is another phenomenon intimately related to the

behavior of a fluid near a solid wall. This issue was reviewed by

de Gennes (1985), who stressed that the interaction of a wall

with a fluid must be treated on a molecular basis since, at each

point inside the vessel, it is equal to the statistical mechanical

average of the interactions of the wall’s and the fluid’s mol-

ecules. The important role of the polarizability of the mol-

ecules was also underlined. Even though the discussion was

carried out assuming that the vessel walls were plane and

infinitely large, de Gennes (1985) emphasized that wetting of

porous solids is far more interesting for its important practical

implications, such as, for example, oil recovery from porous

sands in oil fields. Unfortunately the theoretical treatment of

the subject is still at a preliminary stage.

In any case, it is quite reasonable that the density profile of

a fluid within a porous solid qualitatively behaves as shown in

Fig. 1 along any direction orthogonal to the wall of the solid.

This profile is largely inspired by those shown in Fig. 6 of the

paper by Cai et al. (2008). These profiles were obtained by

grand-canonical Monte Carlo (MC) simulations and refer to

methane close to a graphitic plane wall. The presence of one

or more oscillations close to the wall is a general finding. In the

simplest cases of a fluid in contact with plane walls, these

oscillations have been experimentally observed by measuring

the force between two macroscopic solid plane walls separated

by a very thin film of fluid (Israelashvili, 1982) or by X-ray

experiments (Huisman et al., 1997). [See also Nygård et al. (2009).]

These experiments cannot be carried out in the case of

porous-solid/fluid systems because of the absence of macro-

scopic plane walls. Nonetheless it has recently been shown that

useful structural information on these systems can be obtained

by small-angle scattering experiments using X-rays (Jähnert et

al., 2009, and references therein) or neutrons (Smarsly et al.,

2001; Melnichenko et al., 2006, 2009; Rother et al., 2007;

Melnichenko & Wignall, 2009; Radlinski et al., 2009). In

particular, after measuring the radiation absorption factors

and the Porod invariants of some samples formed by porous

silica with carbon dioxide at different pressures, Melnichenko

et al. (2006) definitely showed, independently of the shape of

the silica pores, that the variation of the aforesaid quantities

with the CO2 pressure requires that the fluid be treated as a

two-phase system. Since the best spatial resolution of small-

angle scattering (SAS) experiments is of the order of 10 Å

(Guinier & Fournét, 1955), these experiments can only

determine the scattering density profile averaged over sphe-

rical regions of diameters not smaller than 10 Å. [Note that by

‘scattering density’ we mean the scattering-length density or

the electron density depending on whether we deal with

neutron (SANS) or X-ray (SAXS) small-angle scattering.]

In this respect it is useful to recall a result proved by

Ciccariello (2002) and related to the problem of approx-



imating a continuous function by a discrete valued function,

i.e. a function that, in the simplest case, assumes two single

values. This problem is of central importance for SAS

experiments because, in interpreting the measured intensities,

one usually assumes that the sample is made up of a few

homogeneous phases (Debye et al., 1957), where a few means

two in most cases. Ciccariello’s paper reported the equations

that determine the best discrete valued approximation to a

continuous scattering density function. The equations are

based on the spatial averages of the last function and the

unknown quantities are the sets over which the spatial

averages are evaluated.

Consider now a sample formed by a porous silica and

supercritical CO2. The scattering density of this system takes a

given value within the silica that, by assumption, is non-fractal

so that its walls are sharply defined. Within the fluid and along

each half-line orthogonal to the silica walls the density profile

of the fluid will have a form similar to that shown in Fig. 1.

Moreover, the surface of the porous silica can be considered

plane if its curvature radii (and the silica pore diameters) are

large enough to ensure that Porod’s law is obeyed in the outer

q range. These assumptions imply that (a) the SAS intensity of

the porous silica obeys Porod’s law in the scattering vector

range q> 0:065 Å�1 if the pore diameters are larger than 50 Å

(as happens in the cases that we shall consider later; see x4)

and (b) the fluid profiles along any half-line orthogonal to the

silica surface are expected to coincide. Item (b) ensures that a

two-value approximation of the scattering density of the fluid,

obtained by Ciccariello’s procedure, will produce a first region

of (suitable) thickness � next to the silica wall with constant

scattering density n3 [equal to the mean value of the true

scattering density nðrÞ throughout the volume V3 of this

region, i.e. n3 ¼
R

V3
nðrÞ dv=V3] and a remaining region V2 of

fluid with scattering density n2, equal to the mean of the real

fluid density over region V2. The choice of the thickness value

is made in such a way that the scattering intensity of the

idealized system is closest (in the L2 norm) to the observed

one. By this idealization, the fluid region next to the silica is

delimited by two parallel surfaces. Consequently, the second

derivative of the correlation function of the resulting idealized

system has a finite discontinuity at r ¼ � (Wu & Schmidt, 1974;

Ciccariello, 1985). The analytical expression of the disconti-

nuity, denoted here by D, depends on the scattering densities

of the three phases and on the area of the silica surface

(Ciccariello, 1991). The noted discontinuity is also responsible

for a further Oðq�4Þ term, besides the well known Porod one,

in the asymptotic behavior of the scattering intensity at large

q. In the Porod plot this extra term has the very simple

oscillatory form D cosð�qÞ, so � and D, respectively, determine

the ‘frequency’ and the amplitude of the extra oscillatory

term. Since D depends on the phase scattering densities it

appears evident that numerical analysis of the tails of the

observed intensities can be used to determine the thickness

and the scattering density values.

The aim of this paper is to show that this is in fact the case.

For completeness it must be mentioned that the first appli-

cation of this asymptotic analysis was performed by analyzing

some glass intensities (Ciccariello & Benedetti, 1986).

Subsequently it was used to characterize the films coating

some porous silicas (Benedetti & Ciccariello, 1994; Pikus et al.,

2003). In this paper we shall fully exploit the potentialities of

the procedure because, in contrast to the just mentioned cases,

we shall analyze now intensities known in absolute units.

The plan of the paper is as follows. In the next section we

describe in some detail the samples we are concerned with and

the measurements performed on them. In x3 we report the

main mathematical equations by giving also the expressions of

the scattering densities in terms of the parameters determined

by the best fits of the intensities. In x4, we combine the last

equations with the values of the Porod invariants and we

arrive at the unique determination of the scattering densities

of the idealized system. The physical implications of these

numerical results are also briefly discussed. x5 draws our final

conclusions.

2. Experimental details

A silica aerogel with a volume fraction ’1 ¼ 0:08 of silica

(porosity 92%), a surface area of 400 m2 g�1 and a nominal

density of 0.2 g cm�3 was obtained from Oscellus Technolo-

gies, Livermore, CA, USA. The aerogel surface is known to be

covered with numerous methoxy groups (Si—O—CH3)

formed during supercritical drying of the precursor gel in

supercritical methanol (Tajiri et al., 1995). The aerogel was

shaped into a cylinder (17 mm in diameter and 10 mm in

length) that fits tightly into a SANS high-pressure cell that has

been used extensively for previous neutron scattering

experiments with CO2-saturated silica aerogels and xerogels

(Melnichenko et al., 2004, 2006; Melnichenko & Wignall,
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Figure 1
Schematic density profile of a fluid near a wall. The three horizontal
segments represent the mean value of the profile in the corresponding
intervals (note that the outermost one was considered infinitely large).
They might correspond to a three-phase idealization of the density
profile.



2009). High-purity CO2 (gas chromatography purity 99.99%)

was obtained from Matheson Gas Products Inc. The pressure

was measured using a precision digital pressure indicator

(Sensotec, model AG-100) and the temperature of the cell was

controlled to better than �0.2 K.

SANS experiments were conducted at Oak Ridge National

Laboratory (ORNL) on the General-Purpose SANS instru-

ment (http://neutrons.ornl.gov/instruments/HFIR/CG2/) with

a neutron wavelength � of 4.8 Å (��=� ’ 0:13). The sample–

detector distance was chosen to cover the scattering vector (q)

range 0:009< q< 0:20 Å�1, where q ¼ ð4�=�Þ sinð�=2Þ, in

which � is the scattering angle. The data were corrected for

instrumental background as well as detector efficiency and put

on an absolute scale [cross section IðqÞ in units of cm�1] by

means of pre-calibrated secondary standards (Wignall &

Bates, 1987). Representative SANS data from the studied

aerogels at two temperatures, T = 308 and 353 K, as a function

of CO2 pressure are shown in Fig. 2.

3. Model and related theoretical relations

Based on the considerations reported in x1 we shall idealize

the sample as made up of three homogeneous phases, namely

the silica, and the adsorbed and the confined bulk fluids. The

adsorbed and the confined bulk fluids are, respectively, formed

by the fluid molecules that are distant from the silica wall by

less or more than �, a distance to be determined by the best fit

of the SAS intensities. We denote by ‘confined bulk’ fluid the

fluid that lies within regions external to the shell but internal

to the silica pores, because one expects that the mean inter-

action of the relevant fluid molecules with those of the walls is

not yet fully negligible as happens in the bulk fluid case. Again

the assumption that the pore size is around 50 Å implies, with

reference to Fig. 1, that the adsorbed and the confined bulk

fluids correspond to the first two regions there shown and that

the bulk region (the outermost one in Fig. 1) is not present in

our samples. As already anticipated, we also assume that the

silica wall is a smooth surface and its curvature radii are larger

than 50 Å so as to observe the asymptotic Porod behavior in

the outer part of the explored q range (see x4). The first

assumption implies that the sample presents two interfaces

instead of three. In fact, denoting the

silica phase by 1, the confined bulk fluid

by 2 and the adsorbed fluid by 3, phase 1

is nowhere in contact with phase 2 so

that the corresponding interface S1;2

(where the index values refer to the

opposing phases) does not exist. Thus,

the only interphase surfaces are S1;3 and

S2;3. Furthermore these surfaces are

separated by a distance �, constant

along each straight line orthogonal to

both surfaces. Hence, the two surfaces

are parallel to each other and � 00ðrÞ, the

second derivative of the correlation

function of the sample, will have a finite

discontinuity at r ¼ �. The expression of

the discontinuity depends on the area S of the surface that is

midway between S1;3 and S2;3 as well as on the scattering

densities of the three phases (Ciccariello, 1991). The discon-

tinuity is responsible for an oscillatory contribution, besides

the well known Porod one, in the leading asymptotic behavior

of the SAS intensity IðqÞ. In fact, the full expression of the

leading asymptotic term [see equation (7) of Pikus et al.

(2003)] is

IðqÞ ¼ ðA=q4Þ½1þRð�Þ cosðq�Þ� þ Bck; ð1Þ

with

A � 2�Sn2
1;2�ð�Þ=V; ð2Þ

Rð�Þ � ð1� �2
Þ=ð1þ �2

Þ; �ð�Þ � ð1þ �2
Þ=2; ð3Þ

� � ðn1;3 � n3;2Þ=n1;2 and ni;j � ni � nj; i; j ¼ 1; 2; 3: ð4Þ

Here, V denotes the sample volume, ni the scattering density

(i.e. the electron density for SAXS experiments or the scat-

tering-length density for SANS experiments) of the ith phase

and Bck the background contribution due to the microscopic

density fluctuations (Luzzati et al., 1961). In obtaining equa-

tion (1) it is assumed that � is much smaller than the curvature

radii so as to have

S ’ S1;3 ’ S2;3 and V3 ’ �S; ð5Þ

where V3 denotes the volume of phase 3 (the adsorbed fluid

film).

Parameters A, R, � and Bck can be determined by best-

fitting the observed scattering intensity to equation (1) within

the outer scattering vector interval ½qm; qM�, to be suitably

chosen [see the discussion below equation (24)]. The expres-

sion of the Porod invariant for a three-phase sample in terms

of the volume fractions ’i ¼ Vi=V and scattering densities ni is

QPrd �
R1
0

q2IðqÞ dq ¼ 2�2ðn2
1;2’1’2 þ n2

1;3’1’3 þ n2
2;3’2’3Þ:

ð6Þ
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Figure 2
Representative SANS patterns for silica aerogel saturated with CO2 as a function of pressure
(MPa): (a) T = 308 K and (b) T = 353 K. Dashed lines represent scattering from pure aerogel.



This is numerically evaluated by the observed intensity values

Ij, relevant to the scattering vector values qj, by the expression

QPrd ¼

� P
qj�qM

q2
j ðIj � BckÞðqj � qj�1Þ

�
þA=qM ð7Þ

(where we put q0 ¼ 0 and we neglect the contribution related

to R since it is much smaller than that related to A).

In our case the scattering density of the porous silica is

known. Thus, it is convenient to introduce the dimensionless

scattering densities n̂nj and the sample specific surface S

according to the definitions

n̂n2 � n2=n1; n̂n3 � n3=n1 and S � S=V: ð8Þ

The quantity � becomes

� ¼ ð1þ n̂n2 � 2n̂n3Þ=ð1� n̂n2Þ; ð9Þ

while expression (7), using the condition ’1 þ ’2 þ ’3 ¼ 1 and

equation (5), becomes

QPrd ¼ 2�2n2
1½ð1� n̂n2Þ

2’1ð1� ’1 � ’3Þ þ ð1� n̂n3Þ
2’1’3

þ ðn̂n2 � n̂n3Þ
2
ð1� ’1 � ’3Þ’3�: ð10Þ

By equations (9), (2) and (3) one finds the following expres-

sions of A and R in terms of n̂n2 and n̂n3:

A ¼ 2�n2
1Sð1� 2n̂n3 � 2n̂n2n̂n3 þ n̂n

2
2 þ 2n̂n

2
3Þ; ð11Þ

R ¼
2ðn̂n2 � n̂n3Þðn̂n3 � 1Þ

1� 2n̂n3 � 2n̂n2n̂n3 þ n̂n
2
2 þ 2n̂n

2
3

: ð12Þ

These can be solved in order to express n̂n2 and n̂n3 in terms ofA

and R, besides S and n1. One finds four solutions that read

n̂n2;I ¼ 1þD ðR þ�þÞ; n̂n3;I ¼ 1þD ; ð13Þ

n̂n2;II ¼ 1�D ðR þ�þÞ; n̂n3;II ¼ 1�D ; ð14Þ

n̂n2;III ¼ 1þDþðR þ� Þ; n̂n3;III ¼ 1þDþ; ð15Þ

n̂n2;IV ¼ 1�DþðR þ� Þ; n̂n3;IV ¼ 1�Dþ; ð16Þ

where we put

�� � 1� ð1�R2
Þ

1=2
ð17Þ

and

D� �
1

2n1R

A��
�S

� �1=2

: ð18Þ

For each of the above solutions, its substitution into the right-

hand side (r.h.s.) of equation (10) gives an expression whose

unknown quantities are only ’1 and S, because n1 is assumed

to be known and � was determined by the fit of the observed

intensity to the r.h.s. of equation (1). More explicitly, after

putting

EðS; ’1; ’3;A;RÞ

�
�Afð1� ’3Þ½’3 þ 2ð1þRÞ’1� � 2’2

1ð1þRÞg

2S
ð19Þ

and

FðS; ’1; ’3;A;RÞ �
�A’3½ð1� ’3 � 2’1Þð1�R

2
Þ

1=2
�

2S
;

ð20Þ

from equation (10) it results that

QPrd ¼ EðS; ’1; ’3;A;RÞ þ FðS; ’1; ’3;A;RÞ ð21Þ

or

QPrd ¼ EðS; ’1; ’3;A;RÞ � FðS; ’1; ’3;A;RÞ; ð22Þ

depending on whether one of the first two roots [i.e. equation

(13) or (14)] or one of the second two [i.e. equation (15) or

(16)] is substituted in the r.h.s. of equation (10). Since QPrd is

numerically determined by equation (7), for any sample each

of the two final expressions of equation (10) yields an equation

that can be used to determine S if ’1 is known. In fact, ’3 and

’2 are simply related to S because from equations (5) and (9)

it immediately follows that

’3 ¼ S� and ’2 ¼ 1� ’1 � S�: ð23Þ

If ’1 is not known (or we do not want to use this value in order

to test the accuracy of the best-fit analysis) we can determine

both S and ’1 if we know at least two SAS intensities that

refer to samples that only differ among themselves for the

scattering densities of phases 2 and 3. This is exactly what

happens in the case of the samples obtained using a cell

containing a given amount of porous silica which is then filled

up with carbon dioxide at different pressure values. It should

now appear clear why the use of equation (1) allows us to

determine the (average) scattering densities of the adsorbed

and the confined bulk carbon dioxide within the porous silica
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Table 1
Temperature, pressure and density data for the measured samples.

No.: index of the analyzed samples; T: temperature in K; P: CO2 pressure in
MPa; 	0: density of the CO2 at the reported pressure; 	2: density of the ‘bulk’
CO2 within the pores of the silica; 	3: density of the CO2 film adsorbed on the
silica walls; ’2: volume fraction of the confined bulk fluid; and ’3: volume
fraction of the adsorbed fluid. The values reported in columns 2, 3 and 4 were
experimentally observed. Those in columns 4, 5, 6 and 7 follow from the
analysis of the observed SANS intensities by the procedure described in the
paper and their units are g cm�3.

No. T P 	0 	2 	3 ’2 ’3

1 308 0.00 0.000 0.000 (1) 0.000 (1) – –
2 308 4.61 0.105 0.288 (71) 0.922 (54) 0.62 0.30
3 308 6.63 0.193 0.390 (64) 1.039 (34) 0.57 0.36
4 308 7.60 0.291 0.434 (49) 1.149 (17) 0.37 0.55
5 308 7.92 0.387 0.465 (41) 1.146 (12) 0.29 0.63
6 308 8.01 0.437 0.537 (37) 1.175 (11) 0.28 0.64
7 308 8.11 0.491 0.568 (39) 1.183 (12) 0.25 0.67
8 308 8.39 0.591 0.718 (43) 1.241 (15) 0.30 0.62
9 308 9.60 0.697 0.729 (39) 1.197 (15) 0.21 0.72

10 308 13.30 0.793 0.748 (41) 1.241 (15) 0.29 0.64
11 353 0.00 0.000 0.420 (23) 1.202 (43) – –
12 353 5.38 0.096 0.313 (52) 1.142 (15) 0.51 0.42
13 353 9.23 0.196 0.366 (62) 1.153 (22) 0.42 0.50
14 353 11.99 0.296 0.458 (46) 1.170 (14) 0.36 0.57
15 353 14.15 0.390 0.510 (40) 1.165 (12) 0.31 0.62
16 353 15.63 0.454 0.619 (43) 1.189 (15) 0.39 0.53
17 353 16.59 0.493 0.721 (55) 1.215 (23) 0.47 0.45
18 353 20.08 0.597 0.775 (74) 1.092 (86) 0.65 0.27



at different pressures. The details of the numerical analysis are

illustrated in the following section. We stress that our analysis

assumes that the geometrical configuration and the scattering

density of the silica phase do not appreciably change when

filled with carbon dioxide at different pressures. In fact, the

comparison of the SAS intensities before and after CO2

exposure proves that the silica aerogel structure remains

unaffected by supercritical CO2 (Melnichenko et al., 2006). In

the presence of the fluid, the silica undergoes a uniform

compression that, owing to the small compressibility, will yield

a reasonably small uniform volume contraction and a small

increase of the scattering density. We shall consider these

effects negligible.

4. Numerical analysis

As already mentioned, we shall analyze a set of SANS spectra

that refer to a cell containing a porous silica powder when the

cell is filled by CO2 at different pressures and temperatures.

The values of the temperature (in K), the pressure (in MPa)

and the density (in g cm�3) are reported in the second, third

and fourth columns of Table 1, respectively. The integer in the

first column numbers the samples.

The Porod plots of the intensities are shown in Fig. 3 for the

samples at T = 308 K and in Fig. 4 for those at 353 K. In both

figures the thin curves plot the asymptotic expression given by

equation (1) with the values of the involved parameters A,R,

� and Bck such as to make the value of the expression


2
intst ¼

P
qm�qj�qM

fq4
j Ij �A½1þR cosðqj�Þ� � q4

jBckg
2
ð24Þ

as small as possible. Here Ij are the intensity values relevant to

one of the listed samples, and qm and qM, respectively, denote

the lowest and highest bounds of the best-fitted q range. For

each intensity these values are made visible by the fact that the

thin curves have only been drawn within the best-fitted q

range. We took qM ¼ 0:18 Å�1 because beyond this value the

parasitic scattering from the high-pressure cell edges obscures

the SANS intensities. The smallest bound qm was put at

approximately the peak position.

The best-fitted parameter values are reported in Table 2,

together with the 
2
intst values (see the caption). Definition (24)
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Figure 3
Porod plots of the scattering intensities relevant to the samples at T = 308 K filled up with CO2 at different pressures P. (a) Circles: P = 0 Pa; squares:
4.61 MPa; diamonds: 6.63 MPa; triangles-up: 7.60 MPa; triangles-down: 7.92 MPa. (b) Circles: 8.01 MPa; squares: 8.11 MPa; diamonds: 8.39 MPa;
triangles-up: 9.60 MPa; triangles-down: 13.30 MPa. The continuous curves represent the theoretical results obtained by best fitting the observed
intensities to the asymptotic expression given by equation (1). They have only been drawn within the q ranges used for the best fits.

Figure 4
Porod plots of the scattering intensities relevant to the samples at T = 353 K filled up with CO2 at different pressures P. (a) Circles: P = 0 Pa; squares:
5.38 MPa; diamonds: 9.23 MPa; triangles-up: 11.98 MPa; triangles-down: 14.15 MPa. (b) Circles: 15.63 MPa; squares: 16.59 MPa; diamonds: 20.08 MPa.
The continuous curves represent the best-fit results.



is not the statistically correct one because we do not know the

experimental errors on Ij. This explains the very small values

found for 
2
intst. However, Figs. 3 and 4, and the fact that the

values given in the second column of Table 2 are of the same

order, make us confident of the good quality of the fits.

The parameter values are shown in Fig. 5. The corre-

sponding errors are shown by the error bars. They are smaller

than the symbol size when the bars are not visible (a

convention adopted throughout the paper). They have been

estimated from the Hessian values evaluated at the relevant

minima of 
2
intst (scaled to one). The behavior of the para-

meters changes with temperature and with the CO2 pressure.

At 353 K the thickness of the adsorbed CO2 shows a well

defined maximum, while the maximum is much broader at

308 K. Moreover, the peak position increases with tempera-

ture, while its height slightly decreases. We note that a finite

thickness is also present at zero pressure. This is probably due

to the presence of water and methoxy groups adsorbed on the

silica walls. The behaviors of A at low and high temperatures

are roughly similar, even though the behavior appears more

regular at 353 K. The value of R is almost constant at 353 K

and much more variable at 308 K. The behavior of Bck is much

more irregular, aside from a tendency to show a minimum and

then an increase with pressure.

Fig. 6 shows the values ofQPrd, the Porod invariant relevant

to each considered sample. The QPrd values have been eval-

uated by equation (9). From the behaviors of all these para-

meters it is difficult to draw definite physical consequences

because these quantities depend on many variables. However,

one feature appears evident from Figs. 5 and 6: the involved

quantities show a strong dependence on the pressure within

the range 8–9 Mpa at 308 K only. (The same feature is also

evident in the left panel of Fig. 7.) Under these physical

conditions the bulk CO2 is still close to its critical point. This

suggests that the noted strong dependence is likely related to

the higher compressibility and larger density fluctuations

shown by the fluid around the critical region.

It is now important to use the values of A, R and � to

determine the (matter) density values of the CO2 phases

present within the samples. We already noted that the relative

scattering-length densities of phases 2 and 3 are given by

equations (13)–(16). These involve, however, quantities Dþ or

D which depend on S and n1, respectively, the specific surface

and the scattering-length density of the porous silica [see

research papers

48 Salvino Ciccariello et al. � Supercritical carbon dioxide behavior J. Appl. Cryst. (2011). 44, 43–51

Table 2
Results of the intensity best fits by equation (24).

The units for A, � and Bck are Å�4 cm�1, Å and cm�1, respectively.

No. 
2
intst � 1013 A� 105 R � Bck

1 9.82 4.84 0.171 19.0 0.0135
2 44.3 4.11 0.842 15.0 0.0435
3 34.3 3.72 0.632 17.6 0.0352
4 16.2 4.13 0.327 27.3 0.0071
5 6.16 3.77 0.349 31.2 0.0059
6 3.80 3.26 0.292 31.8 0.0148
7 7.53 3.04 0.273 33.4 0.0198
8 13.6 2.16 0.106 30.9 0.0370
9 9.15 1.77 0.299 35.4 0.0158
10 12.3 1.92 0.115 31.6 0.0445
11 9.82 4.84 0.171 19.0 0.0135
12 19.2 5.54 0.301 20.8 0.0127
13 48.5 4.98 0.288 24.9 0.0048
14 12.5 4.07 0.274 28.0 0.0039
15 5.84 3.47 0.308 30.7 0.0059
16 10.8 2.61 0.276 26.4 0.0252
17 28.9 1.94 0.217 22.5 0.0303
18 28.5 1.04 0.854 13.6 0.0428

Figure 5
Plots of the best-fitted parameter values reported in Table 2 versus the
CO2 pressure. The four figures at the top refer to the sample at T = 308 K
and the four at the bottom to the samples at T = 353 K. The errors are
smaller than the symbol size when the error bars are not visible. The units
of A, � and Bck, respectively, are Å�4 cm�1, Å and cm�1.

Figure 6
Plot of the sample Porod invariants, evaluated by equation (9), versus the
CO2 pressure. Filled dots refer to the samples at T = 308 K, filled squares
to those at T = 353 K. The QPrd units are Å�3 cm�1.



equation (18)]. While n1 is known to be equal to

3:16� 1010 cm�2, because the scattering length and the matter

density of the porous silica are, respectively, equal to

1:58� 10�12 cm and 2 g cm�3, as yet quantity S is not known.

Thus, the relative scattering-length densities of phase 2 and 3

are only known in terms of S. This quantity, as well as the

volume fraction of the silica, can be obtained from the known

QPrd values. This fact in turn will allow us to determine the

scattering-length and the matter densities of the adsorbed and

confined bulk-fluid phases of the samples.

In fact, denoting by QPrd; J the Porod invariant of sample J

with J ¼ 1; . . . ; 18, the values of S and ’1 are obtained by

minimizing both the function


2
fnl;þ �

1

14

X
J¼2;18

0

QPrd;J � ½Eð	;AJ;RJÞ þ Fð	;AJ;RjÞ�
� �2

ð25Þ

and the function


2
fnl;� �

1

14

X
J¼2;18

0

QPrd;J � ½Eð	;AJ;RJÞ � Fð	;AJ;RjÞ�
� �2

;

ð26Þ

where the prime on the sum symbol denotes that the value

J ¼ 11 has not been considered and 	 stands for the quantities

ðS; ’1; ’3Þ ¼ ðS; ’1;S�Þ. Samples 1 and 11 are porous silica

with no carbon dioxide. After minimizing function (25), one

finds


2
fnl;þ ¼ 2:64� 10�5; S ¼ 2:02 ð15Þ � 106 cm�1

and ’1 ¼ 0:0748 ð768Þ:
ð27Þ

If one performs the minimization by also including samples 1

and 11 in definition (25), one finds 
2
fnl;þ ¼ 2:48� 10�5,

S ¼ 2:02 ð14Þ � 106 cm�1 and ’1 ¼ 0:072 ð73Þ. These values

are close to the previous ones. It appears reasonable to

conclude that whatever the choice of 
2
fnl;þ the final results do

not appreciably change. Since we do not know much about the

chemical impurities present inside the porous silica after its

chemical preparation we prefer to refer to definitions (25) and

(26) because these only involve the samples containing CO2.

The minimization of expression (26) gives


2
fnl;� ¼ 1:37� 10�5; S ¼ 2:16 ð10Þ � 106 cm�1

and ’1 ¼ 0:41 ð4Þ:
ð28Þ

This solution is physically unsatisfactory because the resulting

values of the volume fraction ’3 ð¼ S�Þ are such that, added to

the value of ’1, they exceed one. Moreover, the ’1 value of

0.41 does not agree with that obtained by weight and volume

measurements (0.08, as reported in x2). Hence the physically

acceptable solution is that given by relations (27).

The relative scattering-length densities of phases 2 and 3 are

obtained by equations (13) or (14), substituting here the

known n1 value, the just obtained S value, and the A and R

values previously determined. Finally, the matter density

values of phases 2 and 3 are obtained, in units of g cm�3, by

multiplying the resulting scattering-length density values by

n1MCO2
=ðN AbCO2

Þ ¼ 1:272, where MCO2
denotes the molecular

weight of the carbon dioxide, bCO2
ð¼ 1:81� 10�12cm�1Þ its

scattering length and N A the Avogadro number. It turns out

that the matter densities resulting from equation (13) for the

adsorbed and the confined bulk fluids physically are not

satisfactory for two reasons: (a) for both phases they are

greater than that of the bulk CO2 (and even of the silica), and

(b) they decrease as the pressure increases. Thus only the

densities resulting from equation (14) are the physically

correct solutions. The corresponding values are reported with

their errors in Table 1 and are shown in Fig. 7. [The errors have

been estimated as described in the case of Table 2.] The figure

makes it evident that (a) the matter density of the adsorbate is

relatively insensitive to the CO2 pressure since whatever the

latter value it is roughly equal to 1.2 g cm�3, and (b) the matter

density of phase 2, i.e. the confined bulk CO2, increases with

pressure. Furthermore, at T = 308 K (see the left panel of

Fig. 7), the matter density approaches the bulk CO2 values

from above as the pressure increases and practically coincides

with the bulk values at 9.6 and 13.3 MPa. At T = 353 K (right

panel of Fig. 7), the confined bulk CO2 density is greater than

the bulk’s but, in contrast to the previous case, the difference

is almost constant throughout the explored pressure range.

This behavior is worth a few words of comment. In the

introductory section we emphasized that, if a fluid wets a solid

wall, the latter molecules tend to attract the fluid’s more

research papers

J. Appl. Cryst. (2011). 44, 43–51 Salvino Ciccariello et al. � Supercritical carbon dioxide behavior 49

Figure 7
Plots of the matter density values of the CO2 phases versus the CO2 pressure. Filled circles: bulk CO2 phase within a large vessel; filled squares: bulk
confined CO2; diamonds: density of the CO2 film adsorbed on the silica wall. Left: samples at T = 308 K; right: samples at T = 353 K.



strongly than the fluid molecules do among themselves. We

recall that the attraction originates from the molecule polar-

izabilities and, as happens for the Lennard–Jones potential,

this attraction represents the tail of the molecule–molecule

effective interaction (see, e.g., Hansen & McDonald, 1976).

We also recall that (i) given a (bulk) fluid at fixed temperature

and pressure, if the interaction between the particles becomes

more attractive (repulsive) the density increases (decreases);

(ii) at fixed density and interactions an increase of the

temperature causes an increase of the pressure and vice versa;

and (iii) close to an ideally rigid wall (i.e. when the interaction

between the molecules of the wall and those of the fluid is a

hard-core one) the density profile is similar to that shown in

Fig. 1 with the difference that the maximum is located at r ¼ 0

[i.e. on the wall; see, e.g., Abraham & Singh (1977) and Percus

& Williams (1983)]. Because a higher density causes (and is

produced by) a higher pressure, the last property implies that

the pressure attains its maximum on the wall and decreases

(with some oscillations) as one drifts away from the wall. The

presence of such a maximum makes the approach to the wall

very hard for the fluid molecules inside the vessel so that these

remain confined within the vessel. In close proximity to the

wall the last picture does not change in the presence of an

attractive tail in the interaction of the real wall with the fluid

because the repulsive forces are much stronger than the

attractive ones. Recalling that n3 and, consequently, 	3 result

from an average of the true density profile in the vicinity of the

wall, then to have found that the matter density of the

adsorbed fluid is higher than that of the bulk and rather

insensitive to the applied pressure appears quite sound.

Furthermore, the mechanical statistical effects of the repulsive

forces depend weakly on the temperature. (In fact, in the

case of the ideal hard-sphere fluid, the temperature depen-

dence only occurs by the kinetic contribution.) Thus, the

fact that the found 	3 values are almost equal to 1 g cm�3,

whatever the temperature value, also is physically quite

sensible.

The quantities n2 and 	2 result from the average of the true

profiles over intervals that go from � to the mid-point of the

pores. The latter diameters being 
70 Å (Tajiri et al., 1995),

the distance range from the walls is ½�; 35 Å]. Here the

attractive part of the wall–liquid interaction is still very

effective. Thus, according to (i) above, one expects – as in fact

happens – that the 	2 values will be greater than those of the

bulk. Moreover, the difference between the two should

decrease with increasing bulk pressure because an increase of

the pressure leads to an increase of the density and, conse-

quently, the role of the repulsive part of the interaction

becomes more pronounced. This effect is clearly visible only at

308 K. Fig. 7 shows that the largest density of the bulk fluid at

353 K is considerably smaller than that at the lowest

temperature. This implies that the attractive effects still

dominate the repulsive ones at 353 K so as to make the

confined bulk fluid density greater than that of the bulk

throughout the explored pressure range, as is actually

observed. In other words, this range must be further enlarged

to observe the approach between the two densities.

5. Conclusion

SAS experiments have already indicated that a fluid inside a

porous silica sample must be approximated by a two-phase

system formed by a layer of constant density and thickness

next to the wall of the solid support and a remaining region

with a different density value. This conclusion was reached by

exploiting the cylindrical shape of the pores (Smarsly et al.,

2001; Jähnert et al., 2009) and independently from such

assumptions (Melnichenko et al., 2006). In the present paper,

analyzing the tails of the observed intensities, we have gone a

step farther, since we have been able to determine the thick-

ness values and the density values of the fluid region closer to

the silica wall as well as the density of the bulk fluid confined

in the outer regions. The behavior of the values with

temperature and pressure physically appears to be quite

sound. These values represent the averages of the real density

profiles of the fluid inside two complementary regions of the

silica pores. Their determination is the main original aspect of

this analysis.
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Jähnert, S., Müter, D., Prass, J., Zickler, G. A., Paris, O. & Findenegg,

G. H. (2009). J. Phys. Chem. C, 113, 15201–15210.
Luzzati, V., Witz, J. & Nicolajeff, A. (1961). J. Mol. Biol., 3, 367–371.
Melnichenko, Y. B., Mayama, H., Cheng, G. & Blach, T. (2009).

Langmuir, 26, 6374�6379.
Melnichenko, Y. B. & Wignall, G. D. (2009). Int. J. Thermophys. 30,

1578–1590.
Melnichenko, Y. B., Wignall, G. D., Cole, D. R. & Frielinghaus, H.

(2004). Phys. Rev. E, 69, 057102.
Melnichenko, Y. B., Wignall, G. D., Cole, D. R. & Frielinghaus, H.

(2006). J. Chem. Phys. 124, 204711.
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